CISCO
PuzzleFS

the next-generation container filesystem

github.com/project-machine/puzzlefs

Ariel Miculas
amiculas@cisco.com

Overview

* Introduction

* Ocli drawbacks

* Design goals

» Status + demo

* PuzzleFS data format

* Results

* Linux kernel filesystem driver (POC)
* Questions

09/18/2023 2

Introduction

* PuzzleFS is an immutable filesystem which shares design goals
with the OCIv2 brainstorm

* Uses Content defined chunking (CDC) to split a filesystem into
variable sized chunks

* The chunks are kept in a data store (content addressed)
* Metadata is stored separately and it has links to the data blobs

09/18/2023 3

https://hackmd.io/@cyphar/ociv2-brainstorm

Context

» Started by Tycho Andersen in 2021

* His Fosdem presentation from 2019 “An operator centric way to
update application containers with AtomFS” highligted the issues
with OCIv1l and introduced AtomFS

» Atomfs was also presented by my colleague Scott Moser at
Fosdem 2023 “Quick starting secure container storage using
squashfs, overlay and dm-verity”

* PuzzleFS aims to be the successor of AtomFS
» Part of project-machine — an OCI-based secure container linux

09/18/2023 4

https://archive.fosdem.org/2019/schedule/speaker/tycho_andersen/
https://fosdem.org/2023/schedule/event/container_secure_storage/
https://github.com/project-machine

OCI format basics

oci
—— blobs
L sha256
—— 0203516/0a035e. ..
—— 17cd3b4b4bddb1. .. Layers
—— 205cc2418c7cf. ..
L— fab909f4217187. .. Image config
— 1index.json __
L— oci-layout manifest

09/18/2023 5

OCI v1 drawbacks

* Blog post written by Aleksa Sarai in 2019 describing the issues
with the tar format (layers are usually tar(.gz) files)

* Not a well defined format, but a collection of different formats, each with
their own extensions

* No index — archive entries consist of header+content

* Not seekable — applies to compressed tar archives

* No de-duplication — any change leads to re-downloading the whole

* No machine-independent representation - directory entries and xattrs

» Lack of reproducibility, no canonical representation - different tar
extensions that solve the same problem (5 for xattrs)

09/18/2023 6

https://www.cyphar.com/blog/post/20190121-ociv2-images-i-tar

Design goals

Solve the most pertinent OCI v1 problems
* Reduced duplication
* Reproducible image build
* Direct mounting support
» Data integrity
* Memory safety guarantees
* Same implementation in userspace and kernel

09/18/2023 7

Reduced duplication

» Content defined chunking solves the boundary shift problem

* PuzzleFS uses FastCDC to chunk a filesystem into variable sized
data blobs

* Configurable by defining a minimum, average and maximum
chunk size

09/18/2023 8

https://www.usenix.org/system/files/conference/atc16/atc16-paper-xia.pdf

Boundary shift problem

] | [| FileA
5865 35897532 39462643 3832]7950 2889] ...
I I [File A’
FF58 65358975 32394626 4338,3279 5028,89 ..
2>=2>FSC: No duplicates will be detected
; A File A
5865 358@}7532 3(9)46 2643 3832 7@%0 288(9’}
~ ~ File A
FF58 6535 8(9’75 323@}4626 4338 327095028 8&)

N e
)

=2>=>CDC: Most dupllcates will be detected

09/18/2023 9

Issue: small patches

Ubuntu:N size: 80M

libssl.so PATCH

Ubuntu:N+1 size: 80Mdelta size: 80M

09/18/2023

Solution: CDC

Ubuntu:N size: 80M

libssl.so PATCH

Ubuntu:N+1 size: 80M delta size: ~80K (avg chunk size)

09/18/2023 11

Content defined chunking

 Sliding window technique to compute the hash of the window
(rolling hash)

* If the last n bits of the hash are 0, generate a cut point
* Cut points only depend on the last <window size> bytes
(e.g. 48 bytes)

[|>, 7, 1, 4, 3,/6, 2, 9, 2]

[5,7, 1, 4, 3, 6,/ 2, 9, 2]

09/18/2023

Reproducible image build

Canonical representation of the filesystem
» Same traversal order of the filesystem when building an image
* Directory entries, extended attributes are sorted lexicographically
* B-tree maps used instead of hash maps for a defined ordering

09/18/2023

Direct mounting support

* The goal is to prevent tampering
* No extraction step necessary (unlike tar)

* Mountable filesystem format - be simple enough to be decoded in
the kernel

09/18/2023

Data integrity

* Prevent tampering (dm-verity doesn’t fit our use case)
* Puzzlefs has optional support for fs-verity (protects files)

* Must be supported by the underlying filesystem of the puzzlefs
Image

* Fs-verity is computed for each file and stored in the image
manifest

* The image manifest’s fs-verity hash is passed on the command
line of “puzzlefs mount” command

09/18/2023

Memory safety guarantees

* Implemented in Rust (both the FUSE and the in-kernel filesystem
POC)

* Eliminates undefined behavior and entire classes of bugs
(dangling pointers, use-after-free, buffer overflow)

* Strong typesystem
* First-class support for writing unit and integration tests
» Painless iterative development

09/18/2023

Sharing the same code In user and kernel space

* Rust support for the kernel was merged in Linux 6.1
* Don’t write the same code twice
Differences:
* The kernel only allows fallible allocations (allowed to fail)
» Cannot handle file operations in the same way as in user space

* Code must duplicated because the kernel cannot fetch code from
crates.io (or use the cargo build system)

09/18/2023

Status

* Build, extract and fuse-mount puzzlefs filesystems

 fs-verity — requires filesystem support from the underlying data
store

* Optional zstd compression for the data blobs
* Proof-of-concept Linux filesystem drivers written in Rust

09/18/2023

y tree /tmp/example-rootfs

/tmp/example-rootfs
— algorithms

L— binary-search.txt
— lorem_ipsum.txt

2 directories, 2 files

~/work/cisco/puzzlefs maste

~/work/cisco/puzzlefs maste

y target/release/puzzlefs build /tmp/example-rootfs ~/oci/puzzlefs-image puzzlefs-example
puzzlefs image manifest digest: da22d51571337237ab24b8d68437T6525311ecb0dledalB8c56d91bb2d25912a43

~/work/cisco/puzzlefs maste

» target/release/puzzlefs enable fs-verity =/oci/puzzlefs-image puzzlefs-example da22d51571337237ab24b8d6843T65
25311ec60dBedal8c56d91bb2d25972a43

~/work/cisco/puzzlefs maste

y target/release/puzzlefs mount --digest da22d5157f337237ab24b8d684376525311ecb60dfedal8c56d91bb2d259F2a43 ~/oci
/puzzlefs-image puzzlefs-example /tmp/puzzle

~/work/cisco/puzzlefs maste

> journalctl --since "2 min ago" | grep puzzlefs

Aug 14 16:09:57 archlinux-cisco [161561]: Mounting /tmp/puzzle
;:0rk;c1;c0;puzzlﬂfr 1ste

> mount | grep '/tmp/puzzle'

/dev/fuse on type fuse (rw,nosuid,nodev,relatime,user id=1000,group id=1000)

09/18/2023

PuzzleFS data format

index.json —tag—:r manifest
metadata| layer 1 metadata| layer 2
L 4 A 4
inode 1 inode 1
inode 2 inode 2
inode 3
h 4 v h 4
S4AFEGT1L... DD175881.
chunk 2 chunk 4
D4BCE989...
chunk 6
23FF5689...
chunk 1
12445EF7... o ABDF5438...
chunk 3 7 chunk 5

PuzzleFS data format

* Metadata is serialized using Capnproto (serialization protocol)

* There are two levels of indirection:

* The image manifest contains a list of metadata layers and the
associated fs-verity data

- Each metadata layer contains the metadata for its files and directories,
and links to data blobs

» Data blobs are stored content-addressed (they are named after
their sha256 hash)

09/18/2023

PuzzleFS data format

struct Inode {

struct VerityData { ino@0: UInt64;
digest@0: Data; mode: union {unknown@1: Void,;
verity@1: Data; dir@4: Dir;
} file@6: List(FileChunk):;
struct BlobRef {
digest@O: Data, }
offset@1: UInt64; uid@10: UInt32;
compressed@2: Bool; gid@11: UInt32;
} permissions@12: UInt16;
additional@13: InodeAdditional;
struct Rootfs { }
metadatas@O: List(Metadata.BlobRef);
fsVerityData@1: List(VerityData);
manifestVersion@2: UInt64; struct InodeVector {
} inodes@O: List(Inode);
}

09/18/2023

slefelofelelele
0OOOOO10
slefelolelople
Slefelolelele]e
DOEOOO40
slefelolelelele
glefelolelelsye
slefelolelcige
alefeloleleaye
slefelofelele]e
DOOOORa0
glefelolelela]e
0OOOOOCO

00 00 0O 00 19 00 OO 006 00 00 00 01 0O
01 00 00 00 47 00 00 606 PO 03 00 01 06
g6 /7 6b 55 44 33 22 11 06 ad =1
03 00 00 00 00 00 00 a6 10 14 I
11 22 33 44 55 66 77 88| i

05 00 00 OO0 00 A0 00 66] OC I
04 00 00 OO0 01 OO0 01 0O bb cc dd ee ff
01 00 0O 6O 32 60 OO0 00 i 65 5f 31 00
04 00 0O 00 01 60 01 00O 00 00 00
PO OO0 00 60 01 OO Pl OO fe ca fe fe
00 OO0 OO0 00 00 0O Pl OO PO 02 01 00 06
cO de cO de cO de cO de de de de
cO® de cO de cO de c0O de | de de de

= xxxxxxxxxxxx »

]

L sy
%

E ALY Ll

I-.-'_ T

|]

1o

PXY PR NXX

H !

:-.-' s

,a:fllg loo

*ixxxxxxxx

|]
-'.:;-".-".-".“-".-".
|]

1
HK}CHKK}C}{!}:){}CH}CIH}C

B0 0] B
L]
]

Results

* |'ve downloaded 10 versions of Jammy from hub.docker.com
* These images only have one layer which is in tar.gz format
* I've built 10 equivalent puzzlefs images

» Compute the tarball total size by summing the sizes of every Jammy
tarball (uncompressed) => 766 MB (use this as baseline)

* Sum the sizes of every oci/puzzlefs image => total_size

* Compute the total size as if all the versions were stored in a single
oci/puzzlefs repository => total _unified_size

» Saved space = tarball total size - total unified_size

09/18/2023

Results

Oci (uncompressed) 766 0 (0%)
PuzzleFS 748 74 130 635 (83%)
uncompressed

Oci (compressed) 282 28 282 484 (63%)
PuzzleFS 298 30 53 713 (93%)

(compressed)

09/18/2023

Kernel filesystem driver

09/18/2023

Cisco Posts Rust-Written PuzzleFS File-System Driver For Linux
Written by Michael Larabel in Linux Storage on 9 June 2023 at 05:50 AM EDT. 23 Comments

PuzzleFS is a next-generation container file-system for Linux with fast image building,
direct-mount support, and other container-optimized features being worked on by Cisco
engineers. And it's written in Rust.

Ariel Miculas of Cisco today posted an initial "request for comments” patch series on this
PuzzleFS file-system with the kernel driver written in Rust. For now this Rust driver is
considered proof-of-concept. The patch series goes on to describe PuzzleFS as:

Puzzlefs is a container filesystem designed to address the limitations of the existing OCI
format. The main goals of the project are reduced duplication, reproducible image builds,
direct mounting support and memory safety guarantees, some inspired by the OClv2
design document.

Reduced duplication is achieved using the content defined chunking algorithm FastCDC.
This implementation allows chunks to be shared among layers. Building a new layer
starting from an existing one allows reusing most of the chunks.

Kernel filesystem driver

* Proof-of-concept driver written in Rust and posted to the kernel
mailing list

* Two versions based on Wedson Almeida’s filesystem and
read-only filesystem abstractions (not yet upstream)

* Requires adding third-party crates to the Linux kernel (capnproto-
rust and hex)
* Challenges:
* many missing rust abstractions, infrastructure is still under development

* Requires no-std support and can only use fallible allocation APIs
(try_new instead of new, try_push instead of push etc.)

09/18/2023

https://github.com/ariel-miculas/linux/tree/puzzlefs_rfc
https://lore.kernel.org/lkml/20230726164535.230515-1-amiculas@cisco.com/
https://github.com/wedsonaf/linux/commits/fs
https://github.com/wedsonaf/linux/commits/ro-fs

~ # cat /proc/filesystems | grep puzzlefs

nodev puzzlefs

~ # cat /home/puzzlefs oci/index.json
{"schemaVersion":-1,"manifests":[{"digest":"sha256:c43e5ab9d0ceeldctbT442d18023b34410de3deblf
~ # mount -t puzzlefs -o oci root dir="/home/puzzlefs oci" -o image manifest="c4
3e5ab9d0ceeldctbf442d18023b34410de3debOfodbTfcec72732b6830db09" none /mnt

~ # 1s -la /mnt/

total ©

drwxr-xr-x 20 (0] ® Aug 11 13:50 dir-1
drwxr-xr-x 2 0 0 ® Aug 11 13:50 dir-2
drwxr-xr-x 20 0 ® Aug 11 13:50 dir-3
drwxr-xr-x 20 (0] ® Aug 11 13:50 dir-4
-rw-r--r-- 10 (0] 0 Aug 11 13:50 filel
-rwW-r--r-- 10 0 O Aug 11 13:50 file2
~ # wc /mnt/filel
202 202 5454 /mnt/filel

~ # cat /mnt/file2
ana are mere bla bla bla

...#I

Capnproto-rust kernel integration

* No alloc support — easier than supporting kernel’s custom alloc
* Replace Strings with enum in error codes (no String in kernel)

* Introduce NoAllocBufferSegments - a version of BufferSegments
suitable for no alloc environments (to avoid parsing the capnp
message every time a field is accessed)

09/18/2023

Questions?

Let’s stay In touch!

https://github.com/project-machine/puzzlefs
amiculas@cisco.com

09/18/2023

https://github.com/project-machine/puzzlefs
mailto:amiculas@cisco.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

