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● Introduction
● Oci drawbacks
● Design goals
● Status + demo
● PuzzleFS data format
● Results
● Linux kernel filesystem driver (POC)
● Questions
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Introduction

● PuzzleFS is an immutable filesystem which shares design goals 
with the OCIv2 brainstorm

● Uses Content defined chunking (CDC) to split a filesystem into 
variable sized chunks

● The chunks are kept in a data store (content addressed)
● Metadata is stored separately and it has links to the data blobs

https://hackmd.io/@cyphar/ociv2-brainstorm
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Context

● Started by Tycho Andersen in 2021
● His Fosdem presentation from 2019 “An operator centric way to 

update application containers with AtomFS” highligted the issues 
with OCIv1 and introduced AtomFS

● Atomfs was also presented by my colleague Scott Moser at 
Fosdem 2023 “Quick starting secure container storage using 
squashfs, overlay and dm-verity”

● PuzzleFS aims to be the successor of AtomFS
● Part of project-machine – an OCI-based secure container linux

https://archive.fosdem.org/2019/schedule/speaker/tycho_andersen/
https://fosdem.org/2023/schedule/event/container_secure_storage/
https://github.com/project-machine
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OCI format basics
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OCI v1 drawbacks

● Blog post written by Aleksa Sarai in 2019 describing the issues 
with the tar format (layers are usually tar(.gz) files)

● Not a well defined format, but a collection of different formats, each with 
their own extensions

● No index – archive entries consist of header+content
● Not seekable – applies to compressed tar archives
● No de-duplication – any change leads to re-downloading the whole
● No machine-independent representation - directory entries and xattrs
● Lack of reproducibility, no canonical representation - different tar 

extensions that solve the same problem (5 for xattrs)

https://www.cyphar.com/blog/post/20190121-ociv2-images-i-tar
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Design goals

Solve the most pertinent OCI v1 problems
● Reduced duplication
● Reproducible image build
● Direct mounting support
● Data integrity
● Memory safety guarantees
● Same implementation in userspace and kernel
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Reduced duplication

● Content defined chunking solves the boundary shift problem
● PuzzleFS uses FastCDC to chunk a filesystem into variable sized 

data blobs
● Configurable by defining a minimum, average and maximum 

chunk size

https://www.usenix.org/system/files/conference/atc16/atc16-paper-xia.pdf
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Boundary shift problem
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Issue: small patches
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Solution: CDC
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Content defined chunking

● Sliding window technique to compute the hash of the window 
(rolling hash)

● If the last n bits of the hash are 0, generate a cut point
● Cut points only depend on the last <window size> bytes

(e.g. 48 bytes)
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Reproducible image build

Canonical representation of the filesystem
● Same traversal order of the filesystem when building an image
● Directory entries, extended attributes are sorted lexicographically
● B-tree maps used instead of hash maps for a defined ordering
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Direct mounting support

● The goal is to prevent tampering
● No extraction step necessary (unlike tar)
● Mountable filesystem format - be simple enough to be decoded in 

the kernel
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Data integrity

● Prevent tampering (dm-verity doesn’t fit our use case)
● Puzzlefs has optional support for fs-verity (protects files)
● Must be supported by the underlying filesystem of the puzzlefs 

image
● Fs-verity is computed for each file and stored in the image 

manifest
● The image manifest’s fs-verity hash is passed on the command 

line of “puzzlefs mount” command
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Memory safety guarantees

● Implemented in Rust (both the FUSE and the in-kernel filesystem 
POC)

● Eliminates undefined behavior and entire classes of bugs 
(dangling pointers, use-after-free, buffer overflow)

● Strong typesystem
● First-class support for writing unit and integration tests
● Painless iterative development
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Sharing the same code in user and kernel space

● Rust support for the kernel was merged in Linux 6.1
● Don’t write the same code twice

Differences:
● The kernel only allows fallible allocations (allowed to fail)
● Cannot handle file operations in the same way as in user space
● Code must duplicated because the kernel cannot fetch code from 

crates.io (or use the cargo build system)
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Status

● Build, extract and fuse-mount puzzlefs filesystems
● fs-verity – requires filesystem support from the underlying data 

store
● Optional zstd compression for the data blobs
● Proof-of-concept Linux filesystem drivers written in Rust
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Demo
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PuzzleFS data format
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PuzzleFS data format

● Metadata is serialized using Capnproto (serialization protocol)
● There are two levels of indirection:

● The image manifest contains a list of metadata layers and the 
associated fs-verity data

● Each metadata layer contains the metadata for its files and directories, 
and links to data blobs

● Data blobs are stored content-addressed (they are named after 
their sha256 hash)
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PuzzleFS data format
struct Inode {
    ino@0: UInt64;
    mode: union {unknown@1: Void;
          dir@4: Dir;
          file@6: List(FileChunk);
          ...
      }
    uid@10: UInt32;
    gid@11: UInt32;
    permissions@12: UInt16;
    additional@13: InodeAdditional;
}

struct InodeVector {
    inodes@0: List(Inode);
}

struct VerityData {
        digest@0: Data;
        verity@1: Data;
}

struct BlobRef {
    digest@0: Data;
    offset@1: UInt64;
    compressed@2: Bool;
}

struct Rootfs {
        metadatas@0: List(Metadata.BlobRef);
        fsVerityData@1: List(VerityData);
        manifestVersion@2: UInt64;
}
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Compact inode representation
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Results

● I’ve downloaded 10 versions of Jammy from hub.docker.com
● These images only have one layer which is in tar.gz format
● I’ve built 10 equivalent puzzlefs images
● Compute the tarball_total_size by summing the sizes of every Jammy 

tarball (uncompressed) => 766 MB (use this as baseline)
● Sum the sizes of every oci/puzzlefs image => total_size
● Compute the total size as if all the versions were stored in a single 

oci/puzzlefs repository => total_unified_size
● Saved space = tarball_total_size - total_unified_size
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Results

Type Total size
(MB)

Average layer 
size (MB)

Unified size 
(MB)

Saved (MB)
/ 766 MB

Oci (uncompressed) 766 77 766 0 (0%)

PuzzleFS 
uncompressed

748 74 130 635 (83%)

Oci (compressed) 282 28 282 484 (63%)

PuzzleFS 
(compressed)

298 30 53 713 (93%)
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Kernel filesystem driver
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Kernel filesystem driver

● Proof-of-concept driver written in Rust and posted to the kernel 
mailing list

● Two versions based on Wedson Almeida’s filesystem and 
read-only filesystem abstractions (not yet upstream)

● Requires adding third-party crates to the Linux kernel (capnproto-
rust and hex)

● Challenges: 
● many missing rust abstractions, infrastructure is still under development
● Requires no-std support and can only use fallible allocation APIs 

(try_new instead of new, try_push instead of push etc.)

https://github.com/ariel-miculas/linux/tree/puzzlefs_rfc
https://lore.kernel.org/lkml/20230726164535.230515-1-amiculas@cisco.com/
https://github.com/wedsonaf/linux/commits/fs
https://github.com/wedsonaf/linux/commits/ro-fs
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Filesystem driver demo
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Capnproto-rust kernel integration

● No alloc support – easier than supporting kernel’s custom alloc
● Replace Strings with enum in error codes (no String in kernel)
● Introduce NoAllocBufferSegments - a version of BufferSegments 

suitable for no alloc environments (to avoid parsing the capnp 
message every time a field is accessed)
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Questions?

Let’s stay in touch!

https://github.com/project-machine/puzzlefs

amiculas@cisco.com

https://github.com/project-machine/puzzlefs
mailto:amiculas@cisco.com
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