
PuzzleFS
the next-generation container filesystem

github.com/project-machine/puzzlefs

Ariel Miculas
amiculas@cisco.com

09/18/2023 2

Overview

● Introduction
● Oci drawbacks
● Design goals
● Status + demo
● PuzzleFS data format
● Results
● Linux kernel filesystem driver (POC)
● Questions

09/18/2023 3

Introduction

● PuzzleFS is an immutable filesystem which shares design goals
with the OCIv2 brainstorm

● Uses Content defined chunking (CDC) to split a filesystem into
variable sized chunks

● The chunks are kept in a data store (content addressed)
● Metadata is stored separately and it has links to the data blobs

https://hackmd.io/@cyphar/ociv2-brainstorm

09/18/2023 4

Context

● Started by Tycho Andersen in 2021
● His Fosdem presentation from 2019 “An operator centric way to

update application containers with AtomFS” highligted the issues
with OCIv1 and introduced AtomFS

● Atomfs was also presented by my colleague Scott Moser at
Fosdem 2023 “Quick starting secure container storage using
squashfs, overlay and dm-verity”

● PuzzleFS aims to be the successor of AtomFS
● Part of project-machine – an OCI-based secure container linux

https://archive.fosdem.org/2019/schedule/speaker/tycho_andersen/
https://fosdem.org/2023/schedule/event/container_secure_storage/
https://github.com/project-machine

09/18/2023 5

OCI format basics

09/18/2023 6

OCI v1 drawbacks

● Blog post written by Aleksa Sarai in 2019 describing the issues
with the tar format (layers are usually tar(.gz) files)

● Not a well defined format, but a collection of different formats, each with
their own extensions

● No index – archive entries consist of header+content
● Not seekable – applies to compressed tar archives
● No de-duplication – any change leads to re-downloading the whole
● No machine-independent representation - directory entries and xattrs
● Lack of reproducibility, no canonical representation - different tar

extensions that solve the same problem (5 for xattrs)

https://www.cyphar.com/blog/post/20190121-ociv2-images-i-tar

09/18/2023 7

Design goals

Solve the most pertinent OCI v1 problems
● Reduced duplication
● Reproducible image build
● Direct mounting support
● Data integrity
● Memory safety guarantees
● Same implementation in userspace and kernel

09/18/2023 8

Reduced duplication

● Content defined chunking solves the boundary shift problem
● PuzzleFS uses FastCDC to chunk a filesystem into variable sized

data blobs
● Configurable by defining a minimum, average and maximum

chunk size

https://www.usenix.org/system/files/conference/atc16/atc16-paper-xia.pdf

09/18/2023 9

Boundary shift problem

09/18/2023 10

Issue: small patches

09/18/2023 11

Solution: CDC

09/18/2023 12

Content defined chunking

● Sliding window technique to compute the hash of the window
(rolling hash)

● If the last n bits of the hash are 0, generate a cut point
● Cut points only depend on the last <window size> bytes

(e.g. 48 bytes)

09/18/2023 13

Reproducible image build

Canonical representation of the filesystem
● Same traversal order of the filesystem when building an image
● Directory entries, extended attributes are sorted lexicographically
● B-tree maps used instead of hash maps for a defined ordering

09/18/2023 14

Direct mounting support

● The goal is to prevent tampering
● No extraction step necessary (unlike tar)
● Mountable filesystem format - be simple enough to be decoded in

the kernel

09/18/2023 15

Data integrity

● Prevent tampering (dm-verity doesn’t fit our use case)
● Puzzlefs has optional support for fs-verity (protects files)
● Must be supported by the underlying filesystem of the puzzlefs

image
● Fs-verity is computed for each file and stored in the image

manifest
● The image manifest’s fs-verity hash is passed on the command

line of “puzzlefs mount” command

09/18/2023 16

Memory safety guarantees

● Implemented in Rust (both the FUSE and the in-kernel filesystem
POC)

● Eliminates undefined behavior and entire classes of bugs
(dangling pointers, use-after-free, buffer overflow)

● Strong typesystem
● First-class support for writing unit and integration tests
● Painless iterative development

09/18/2023 17

Sharing the same code in user and kernel space

● Rust support for the kernel was merged in Linux 6.1
● Don’t write the same code twice

Differences:
● The kernel only allows fallible allocations (allowed to fail)
● Cannot handle file operations in the same way as in user space
● Code must duplicated because the kernel cannot fetch code from

crates.io (or use the cargo build system)

09/18/2023 18

Status

● Build, extract and fuse-mount puzzlefs filesystems
● fs-verity – requires filesystem support from the underlying data

store
● Optional zstd compression for the data blobs
● Proof-of-concept Linux filesystem drivers written in Rust

09/18/2023 19

Demo

09/18/2023 20

PuzzleFS data format

09/18/2023 21

PuzzleFS data format

● Metadata is serialized using Capnproto (serialization protocol)
● There are two levels of indirection:

● The image manifest contains a list of metadata layers and the
associated fs-verity data

● Each metadata layer contains the metadata for its files and directories,
and links to data blobs

● Data blobs are stored content-addressed (they are named after
their sha256 hash)

09/18/2023 22

PuzzleFS data format
struct Inode {
 ino@0: UInt64;
 mode: union {unknown@1: Void;
 dir@4: Dir;
 file@6: List(FileChunk);
 ...
 }
 uid@10: UInt32;
 gid@11: UInt32;
 permissions@12: UInt16;
 additional@13: InodeAdditional;
}

struct InodeVector {
 inodes@0: List(Inode);
}

struct VerityData {
 digest@0: Data;
 verity@1: Data;
}

struct BlobRef {
 digest@0: Data;
 offset@1: UInt64;
 compressed@2: Bool;
}

struct Rootfs {
 metadatas@0: List(Metadata.BlobRef);
 fsVerityData@1: List(VerityData);
 manifestVersion@2: UInt64;
}

09/18/2023 23

Compact inode representation

09/18/2023 24

Results

● I’ve downloaded 10 versions of Jammy from hub.docker.com
● These images only have one layer which is in tar.gz format
● I’ve built 10 equivalent puzzlefs images
● Compute the tarball_total_size by summing the sizes of every Jammy

tarball (uncompressed) => 766 MB (use this as baseline)
● Sum the sizes of every oci/puzzlefs image => total_size
● Compute the total size as if all the versions were stored in a single

oci/puzzlefs repository => total_unified_size
● Saved space = tarball_total_size - total_unified_size

09/18/2023 25

Results

Type Total size
(MB)

Average layer
size (MB)

Unified size
(MB)

Saved (MB)
/ 766 MB

Oci (uncompressed) 766 77 766 0 (0%)

PuzzleFS
uncompressed

748 74 130 635 (83%)

Oci (compressed) 282 28 282 484 (63%)

PuzzleFS
(compressed)

298 30 53 713 (93%)

09/18/2023 26

Kernel filesystem driver

09/18/2023 27

Kernel filesystem driver

● Proof-of-concept driver written in Rust and posted to the kernel
mailing list

● Two versions based on Wedson Almeida’s filesystem and
read-only filesystem abstractions (not yet upstream)

● Requires adding third-party crates to the Linux kernel (capnproto-
rust and hex)

● Challenges:
● many missing rust abstractions, infrastructure is still under development
● Requires no-std support and can only use fallible allocation APIs

(try_new instead of new, try_push instead of push etc.)

https://github.com/ariel-miculas/linux/tree/puzzlefs_rfc
https://lore.kernel.org/lkml/20230726164535.230515-1-amiculas@cisco.com/
https://github.com/wedsonaf/linux/commits/fs
https://github.com/wedsonaf/linux/commits/ro-fs

09/18/2023 28

Filesystem driver demo

09/18/2023 29

Capnproto-rust kernel integration

● No alloc support – easier than supporting kernel’s custom alloc
● Replace Strings with enum in error codes (no String in kernel)
● Introduce NoAllocBufferSegments - a version of BufferSegments

suitable for no alloc environments (to avoid parsing the capnp
message every time a field is accessed)

09/18/2023 30

Questions?

Let’s stay in touch!

https://github.com/project-machine/puzzlefs

amiculas@cisco.com

https://github.com/project-machine/puzzlefs
mailto:amiculas@cisco.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

