Rust references considered
harmful...?

(at least, if they’re pointing to C/C++ things)

Adrian Taylor, Chromium, Google
ade@hohum.me.uk

Hurdles to Rust

.I.h . t I k deployment in
Chromi hnical
IS 1alK... mmglusrg C(i:f{;: e Not g0ing to talk about -

but ack me after if you like!

(a little bit about) How C++ and Rust

Why Chromium developers might Arbitrary Self Types
wants to use Rust interact

Bits that are hopefully interecting for RFL!

Ruct references muct never refer to C data

At least, that’s Chromium’s current belief
Does it apply to the Linux kernel?

Background: Chromium

C++ has errore

veoe/LiL
¥202/L/S
yeoz/Lie
eoe/LiL
€202/L/11
€c0e/Li6
€202/L/L
€202/1/S
€eoe/Lie
€202/L/L
ceoe/iL
2eoz/Lie
ceoe/LL
2eoe/Ls
ceoz/Lie
ceoe/LL
120ze/L/LL
Leoe/Lie
1eoe/LiL
1202/LIS
Leoe/Lie
12oze/L/L
0coz/LLL
020¢2/1/6
0coze/LiL
0202/L/S
0coz/L/e
0coz/LL
6102/L/11
6102/L/6
6102/L/L

Use-after-free bugs with security consequences in Chromium per month
50

40

610¢/L/S
610¢/L/e
6102/L/L
810¢/L/L1
810¢/L/6
8102/L/L
8102/L/S
810¢/L/e
8102/L/L
L102/L/11
L10¢/L/6
L102/V/L
L102/L/S
L10e/L/e
L102/L/L
oL0z/LLL
910¢/L16
9102/LIL
9102/LIS
olLoz/Lie
9102/

MM il ||| o

30
20
10

0

sbnq jo JaquinN

Month

So, rewrite Chromium in Rust?

—)

Nope.

New Rust thingy

Existing C++ thingy

I

Write new bits of Chromium in Rust. Interop!

Existing C++ thingy

New Rust thingy

©00% ¢ § o®

Chromium C++ developers (lots!)

1

Sg®

Chromium Rust developers (few, for now)

Existing C++ thingy

New Rust thingy

mmiﬁ Qe 099

Chromium C++ developers (lots!) Chromium Rust developers (few, for now)

Crashes at-a-distance in Rust

C++ developers

Tolerable crashes

e Buffer overflows e UB caused by a reference pointing to

o Use-after-free uninitialized data

e Hitting assertions e UB caused by multiple concurrent mutable
references

e UB caused by mutation of underlying data

Easy to debug for

¢++ developers while a reference exists

It must not be possible to cause these Rust
crashes by mistakes over in C++

The logical conclusion:

Ruct references muct never refer to C++ data

Will C kernel developers get cross if they cause
weird UB crashes-at-a-distance in Rust?

.. but maybe we’re wrong...?

#[cxx::bridge]
mod ffi {
extern "Rust" {
type MultiBuf;

fn next chunk(buf: &mut MultiBuf) -> &[u8];

unsafe extern "C++" {
include! ("example/include/blobstore.h") ;

type BlobstoreClient;

fn new blobsfage client () —-> UniquePtr<BlobstoreClient>;

fn put (self obstoreClient, buf: &mut MultiBuf) -> Result<u64>;

Why cxx is 0K

: cafdfnr narrow UMW'QN
o | Jellout the entire |

https://github.com/dtolnay/cxx/blob/master/src/opaque.rs#L18

So for broad-scale, autogenerated interfaces, what
do we do?

Can we use cxx-like opaque types for autogenerated interfaces?
Maybe...?

e With MaybeUninit and UnsafeCell, we can make &T technically
safe to point at C++ data without risk of UB

e But not smut T -sowed have to model all of these as &T which
seems to be too coarse

o const T* (especially the this pointer)
o T* (alsothis)

© const Té&

o T&

e So we still don’t want to use Rust references to point to C++ data

https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html

CppRef<T>

CppRef<T> / CppPtr<T>

CppPin<T> / CppValue<T>

Like &T, but without any of the

#[repr(transparent)] usual Rust rufes

pub struct CppRef<'a, T: ?Sized> {
ptr: *const T,
phantom: PhantomData<&'a T>,

A/ever vends Ruct references to its
contents - only CppRef<T>

#[repr(transparent)]
pub struct CppPin<T: ?Sized>(T);

std:string &

&Vec<u8>

CppRef<std:string> Vec<u8> &%

CppRef<Foo>

O

ﬁu

Baz &

CppPin<Bar>

Bar G CppRef<Bar>

|s this ergonomic?

let farm = new _cpp_pin!(cpp::Farm);
let goat: CppRef<cpp::Goat> = farm.as_cpp ref().get goat();

goat.bleat();

CppRef<Goat> goes back fo C++ CrpRef<Goat> comes from C++

e No dereferencing in Rust
e No conversion to a Rust reference
e CppRef<T> is pretty much just an opaque token from Rust’s perspective

Requires ‘arbitrary celf typec”
unstable featvre - working towarde
ctabilizing

// Autogenerated

impl Goat {
fn bleat(self: CppRef<Self>) {

_call cpp Goat bleat via c_abi(self.ptr)
}
}

impl SomeKernelType {
fn some_kernel thing(self: KernelArc<T>) {

}
}

0

%

REL neede thic too for
your kernel Are<T>

and cimilar

Arbitrary self types

impl Foo {
fn by_value(self /* self: Self */);
fn by ref(&self /* self: &Self */);
fn by_ref_mut(&mut self /* self: &mut Self */);
fn by box(self: Box<Self>);
fn by rc(self: Rc<Self>);

fn by custom_ptr(self: CustomPtr<Se1F>:§ Z

struct CustomPtr<T>(*const T);

trait Receiver {
impl<T> Receiver for CustomPtr<T> {

type Target = T;

type Target: ?Sized;

https://github.com/rust-lang/rfcs/blob/master/text/3519-arbitrary-self-types-v2.md

RfL takeaways

e Please continue to help and support Arbitrary Self Types stabilization (and
thanks for your help so far!)

e Decide whether kernel C programmers will get cross if their mistakes cause
weird Rust UB crashes
o If so, and if your Rust/C interface is sufficiently complex, maybe you want
to ban Rust references to C types too
o Or maybe it’s good enough to keep using opaque types (UnsafeCell,
MaybeUninit) and forbid &mut

e Maybe lessons can be learned more generally from our experiences (technical &
social) in deploying Rust in Chromium - feel free to chat later!

Q&A/discussion

