
Pinning in Rust

Benno Lossin (y86-dev@proton.me)

September 7, 2022



What is Pinning?

I "pinned" = "stable address"

I moving data invalidates pointers

prev

next

list_head

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 2



What is Pinning?

I "pinned" = "stable address"

I moving data invalidates pointers

prev

next

list_head

prev

next

list_head

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 2



What is Pinning?

I "pinned" = "stable address"

I moving data invalidates pointers

prev

next

list_head

prev

next

list_head

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 2



What is Pinning?

I "pinned" = "stable address"
I moving data invalidates pointers

prev

next

list_head

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 2



Why is this a Problem in Rust?

I all types in Rust are moveable
I but some types need to have a stable address
I Rust’s solution: consider pointers pinned via Pin<P>, where

P: Deref<Target = T>
I Pin<P> prevents access to &mut T

=⇒ e.g. no calls to mem::swap
I however certain types (e.g. usize/u8...u64 etc.) do not care

about being pinned, since they implement Unpin
I When T: Unpin then Pin<P> behaves like P

e.g. Pin<Box<u64>> behaves like Box<u64>

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 3



Why is this a Problem in Rust?

I all types in Rust are moveable

I but some types need to have a stable address
I Rust’s solution: consider pointers pinned via Pin<P>, where

P: Deref<Target = T>
I Pin<P> prevents access to &mut T

=⇒ e.g. no calls to mem::swap
I however certain types (e.g. usize/u8...u64 etc.) do not care

about being pinned, since they implement Unpin
I When T: Unpin then Pin<P> behaves like P

e.g. Pin<Box<u64>> behaves like Box<u64>

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 3



Why is this a Problem in Rust?

I all types in Rust are moveable
I but some types need to have a stable address

I Rust’s solution: consider pointers pinned via Pin<P>, where
P: Deref<Target = T>

I Pin<P> prevents access to &mut T
=⇒ e.g. no calls to mem::swap

I however certain types (e.g. usize/u8...u64 etc.) do not care
about being pinned, since they implement Unpin

I When T: Unpin then Pin<P> behaves like P
e.g. Pin<Box<u64>> behaves like Box<u64>

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 3



Why is this a Problem in Rust?

I all types in Rust are moveable
I but some types need to have a stable address
I Rust’s solution: consider pointers pinned via Pin<P>, where

P: Deref<Target = T>

I Pin<P> prevents access to &mut T
=⇒ e.g. no calls to mem::swap

I however certain types (e.g. usize/u8...u64 etc.) do not care
about being pinned, since they implement Unpin

I When T: Unpin then Pin<P> behaves like P
e.g. Pin<Box<u64>> behaves like Box<u64>

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 3



Why is this a Problem in Rust?

I all types in Rust are moveable
I but some types need to have a stable address
I Rust’s solution: consider pointers pinned via Pin<P>, where

P: Deref<Target = T>
I Pin<P> prevents access to &mut T

=⇒ e.g. no calls to mem::swap
I however certain types (e.g. usize/u8...u64 etc.) do not care

about being pinned, since they implement Unpin
I When T: Unpin then Pin<P> behaves like P

e.g. Pin<Box<u64>> behaves like Box<u64>

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 3



Why is this a Problem in Rust?

I all types in Rust are moveable
I but some types need to have a stable address
I Rust’s solution: consider pointers pinned via Pin<P>, where

P: Deref<Target = T>
I Pin<P> prevents access to &mut T

=⇒ e.g. no calls to mem::swap

I however certain types (e.g. usize/u8...u64 etc.) do not care
about being pinned, since they implement Unpin

I When T: Unpin then Pin<P> behaves like P
e.g. Pin<Box<u64>> behaves like Box<u64>

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 3



Why is this a Problem in Rust?

I all types in Rust are moveable
I but some types need to have a stable address
I Rust’s solution: consider pointers pinned via Pin<P>, where

P: Deref<Target = T>
I Pin<P> prevents access to &mut T

=⇒ e.g. no calls to mem::swap
I however certain types (e.g. usize/u8...u64 etc.) do not care

about being pinned, since they implement Unpin

I When T: Unpin then Pin<P> behaves like P
e.g. Pin<Box<u64>> behaves like Box<u64>

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 3



Why is this a Problem in Rust?

I all types in Rust are moveable
I but some types need to have a stable address
I Rust’s solution: consider pointers pinned via Pin<P>, where

P: Deref<Target = T>
I Pin<P> prevents access to &mut T

=⇒ e.g. no calls to mem::swap
I however certain types (e.g. usize/u8...u64 etc.) do not care

about being pinned, since they implement Unpin
I When T: Unpin then Pin<P> behaves like P

e.g. Pin<Box<u64>> behaves like Box<u64>

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 3



An Example
1 pub struct SelfReferential {
2 value: u32,

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 4



An Example
1 pub struct SelfReferential {
2 value: u32,
3 ptr: *const u32,

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 4



An Example
1 pub struct SelfReferential {
2 value: u32,
3 ptr: *const u32,
4 _pin: PhantomPinned,
5 }

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 4



An Example
1 pub struct SelfReferential {
2 value: u32,
3 ptr: *const u32,
4 _pin: PhantomPinned,
5 }
6

7 impl SelfReferential {
8 /// SAFETY: Callers need to pin the returned value
9 /// and then initialize ptr.

10 pub unsafe fn new(value: u32) -> Self {
11 Self {
12 value,
13 ptr: core::ptr::null(),
14 _pin: PhantomPinned,
15 }
16 }
17 }
Benno Lossin (y86-dev@proton.me)

Pinning in Rust 4



APIs with Pin<P>

I explicit API support required (as &mut cannot be obtained)

I fn foo(self: Pin<&mut Self>) instead of
fn foo(&mut self)

I a pinned value can never be unpinned
I Pin<&mut Self> creates a new problem: how do we access

the fields?

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 5



APIs with Pin<P>

I explicit API support required (as &mut cannot be obtained)
I fn foo(self: Pin<&mut Self>) instead of

fn foo(&mut self)

I a pinned value can never be unpinned
I Pin<&mut Self> creates a new problem: how do we access

the fields?

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 5



APIs with Pin<P>

I explicit API support required (as &mut cannot be obtained)
I fn foo(self: Pin<&mut Self>) instead of

fn foo(&mut self)
I a pinned value can never be unpinned

I Pin<&mut Self> creates a new problem: how do we access
the fields?

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 5



APIs with Pin<P>

I explicit API support required (as &mut cannot be obtained)
I fn foo(self: Pin<&mut Self>) instead of

fn foo(&mut self)
I a pinned value can never be unpinned
I Pin<&mut Self> creates a new problem: how do we access

the fields?

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 5



Example Continued

1 pub struct SelfReferential {
2 value: u32,
3 ptr: *const u32,
4 _pin: PhantomPinned,
5 }
6

7 impl SelfReferential {
8 pub fn init(self: Pin<&mut Self>) {
9

10

11

12

13 }
14 }

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 6



Example Continued

1 pub struct SelfReferential {
2 value: u32,
3 ptr: *const u32,
4 _pin: PhantomPinned,
5 }
6

7 impl SelfReferential {
8 pub fn init(self: Pin<&mut Self>) {
9 self.ptr = &self.value;

10

11

12

13 }
14 }

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 6



Example Continued

1 pub struct SelfReferential {
2 value: u32,
3 ptr: *const u32,
4 _pin: PhantomPinned,
5 }
6

7 impl SelfReferential {
8 pub fn init(self: Pin<&mut Self>) {
9 self.ptr = &self.value;

10 // ^^^^^^^^^^^^^^^^^^^^^^
11 // cannot assign to data in dereference of
12 // `Pin<&mut SelfReferential>`
13 }
14 }

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 6



Example Continued

1 pub struct SelfReferential {
2 value: u32,
3 ptr: *const u32,
4 _pin: PhantomPinned,
5 }
6

7 impl SelfReferential {
8 pub fn init(self: Pin<&mut Self>) {
9 // SAFETY: we do not move out of this

10 let this: &mut Self = unsafe {
11 Pin::get_unchecked_mut(self)
12 };
13 this.ptr = &this.value;
14 }
15 }

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 6



Pin Projection

I accessing fields via projections

I either Pin<&mut Field> (structural pinning) or
&mut Field (not structural)

I unsafe necessary to ensure this invariant
I pin-project is a macro crate creating these projections

safely

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 7



Pin Projection

I accessing fields via projections
I either Pin<&mut Field> (structural pinning) or

&mut Field (not structural)

I unsafe necessary to ensure this invariant
I pin-project is a macro crate creating these projections

safely

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 7



Pin Projection

I accessing fields via projections
I either Pin<&mut Field> (structural pinning) or

&mut Field (not structural)
I unsafe necessary to ensure this invariant

I pin-project is a macro crate creating these projections
safely

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 7



Pin Projection

I accessing fields via projections
I either Pin<&mut Field> (structural pinning) or

&mut Field (not structural)
I unsafe necessary to ensure this invariant
I pin-project is a macro crate creating these projections

safely

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 7



Drop Guarantee

I we still need one more guarantee

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 8



Drop Guarantee

I we still need one more guarantee

A B C D E

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 8



Drop Guarantee

I what if we just repurpose C?

A B C D E

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 8



Drop Guarantee

I what if we just repurpose C?
C

a: u64 = 42
b: u64 = 0

A B D E

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 8



Drop Guarantee

I oh no, our linked list contains garbage!
C

a: u64 = 42
b: u64 = 0

A B D E

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 8



Drop Guarantee

I ensures that no memory is repurposed before drop() is called

A B C D E

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 8



Drop Guarantee

I calling drop() on C unlinks it from the list

A B C D E

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 8



Drop Guarantee

I now we can repurpose C

C
a: u64 = 42
b: u64 = 0

A B D E

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 8



Drop Guarantee

I ensure that no memory is repurposed before drop() is called
I repurposing is overwriting using ptr::write without

dropping before

I repurposing is deallocation

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 9



Drop Guarantee

I ensure that no memory is repurposed before drop() is called
I repurposing is overwriting using ptr::write without

dropping before
I repurposing is deallocation

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 9



Additional Pitfalls

I Drop implementation: implicitly takes Pin<&mut Self>
instead of &mut self

I even drop(&mut self) is not allowed to move out of
structurally pinned fields

I this is why packed structs cannot be pinned!
I only implement Unpin if all structurally pinned fields are

Unpin

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 10



Additional Pitfalls

I Drop implementation: implicitly takes Pin<&mut Self>
instead of &mut self

I even drop(&mut self) is not allowed to move out of
structurally pinned fields

I this is why packed structs cannot be pinned!
I only implement Unpin if all structurally pinned fields are

Unpin

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 10



Additional Pitfalls

I Drop implementation: implicitly takes Pin<&mut Self>
instead of &mut self

I even drop(&mut self) is not allowed to move out of
structurally pinned fields

I this is why packed structs cannot be pinned!

I only implement Unpin if all structurally pinned fields are
Unpin

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 10



Additional Pitfalls

I Drop implementation: implicitly takes Pin<&mut Self>
instead of &mut self

I even drop(&mut self) is not allowed to move out of
structurally pinned fields

I this is why packed structs cannot be pinned!
I only implement Unpin if all structurally pinned fields are

Unpin

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 10



Conclusion

I Pin<P> pins the pointee indefinitely if !Unpin

I Pin<P> requires API support
I unsafe needed for pin-projections
I Drop and Pin<P> interactions: Drop guarantee, pinned even

in drop

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 11



Conclusion

I Pin<P> pins the pointee indefinitely if !Unpin
I Pin<P> requires API support

I unsafe needed for pin-projections
I Drop and Pin<P> interactions: Drop guarantee, pinned even

in drop

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 11



Conclusion

I Pin<P> pins the pointee indefinitely if !Unpin
I Pin<P> requires API support
I unsafe needed for pin-projections

I Drop and Pin<P> interactions: Drop guarantee, pinned even
in drop

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 11



Conclusion

I Pin<P> pins the pointee indefinitely if !Unpin
I Pin<P> requires API support
I unsafe needed for pin-projections
I Drop and Pin<P> interactions: Drop guarantee, pinned even

in drop

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 11


