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I "pinned" = "stable address"
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Why is this a Problem in Rust?

I all types in Rust are moveable
I but some types need to have a stable address
I Rust’s solution: consider pointers pinned via Pin<P>, where

P: Deref<Target = T>
I Pin<P> prevents access to &mut T

=⇒ e.g. no calls to mem::swap
I however certain types (e.g. usize/u8...u64 etc.) do not care

about being pinned, since they implement Unpin
I When T: Unpin then Pin<P> behaves like P

e.g. Pin<Box<u64>> behaves like Box<u64>
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An Example
1 pub struct SelfReferential {
2 value: u32,
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An Example
1 pub struct SelfReferential {
2 value: u32,
3 ptr: *const u32,
4 _pin: PhantomPinned,
5 }
6

7 impl SelfReferential {
8 /// SAFETY: Callers need to pin the returned value
9 /// and then initialize ptr.

10 pub unsafe fn new(value: u32) -> Self {
11 Self {
12 value,
13 ptr: core::ptr::null(),
14 _pin: PhantomPinned,
15 }
16 }
17 }
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APIs with Pin<P>

I explicit API support required (as &mut cannot be obtained)

I fn foo(self: Pin<&mut Self>) instead of
fn foo(&mut self)

I a pinned value can never be unpinned
I Pin<&mut Self> creates a new problem: how do we access

the fields?
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Example Continued

1 pub struct SelfReferential {
2 value: u32,
3 ptr: *const u32,
4 _pin: PhantomPinned,
5 }
6

7 impl SelfReferential {
8 pub fn init(self: Pin<&mut Self>) {
9

10

11

12

13 }
14 }
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1 pub struct SelfReferential {
2 value: u32,
3 ptr: *const u32,
4 _pin: PhantomPinned,
5 }
6

7 impl SelfReferential {
8 pub fn init(self: Pin<&mut Self>) {
9 self.ptr = &self.value;

10

11

12

13 }
14 }

Benno Lossin (y86-dev@proton.me)

Pinning in Rust 6



Example Continued

1 pub struct SelfReferential {
2 value: u32,
3 ptr: *const u32,
4 _pin: PhantomPinned,
5 }
6

7 impl SelfReferential {
8 pub fn init(self: Pin<&mut Self>) {
9 self.ptr = &self.value;

10 // ^^^^^^^^^^^^^^^^^^^^^^
11 // cannot assign to data in dereference of
12 // `Pin<&mut SelfReferential>`
13 }
14 }
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Example Continued

1 pub struct SelfReferential {
2 value: u32,
3 ptr: *const u32,
4 _pin: PhantomPinned,
5 }
6

7 impl SelfReferential {
8 pub fn init(self: Pin<&mut Self>) {
9 // SAFETY: we do not move out of this

10 let this: &mut Self = unsafe {
11 Pin::get_unchecked_mut(self)
12 };
13 this.ptr = &this.value;
14 }
15 }
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Pin Projection

I accessing fields via projections

I either Pin<&mut Field> (structural pinning) or
&mut Field (not structural)

I unsafe necessary to ensure this invariant
I pin-project is a macro crate creating these projections

safely
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Drop Guarantee

I we still need one more guarantee
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I what if we just repurpose C?
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Drop Guarantee

I what if we just repurpose C?
C

a: u64 = 42
b: u64 = 0
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Drop Guarantee

I oh no, our linked list contains garbage!
C

a: u64 = 42
b: u64 = 0

A B D E
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Drop Guarantee

I ensures that no memory is repurposed before drop() is called
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Drop Guarantee

I calling drop() on C unlinks it from the list
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Drop Guarantee

I now we can repurpose C

C
a: u64 = 42
b: u64 = 0

A B D E
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Drop Guarantee

I ensure that no memory is repurposed before drop() is called
I repurposing is overwriting using ptr::write without

dropping before

I repurposing is deallocation
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Additional Pitfalls

I Drop implementation: implicitly takes Pin<&mut Self>
instead of &mut self

I even drop(&mut self) is not allowed to move out of
structurally pinned fields

I this is why packed structs cannot be pinned!
I only implement Unpin if all structurally pinned fields are

Unpin
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Conclusion

I Pin<P> pins the pointee indefinitely if !Unpin

I Pin<P> requires API support
I unsafe needed for pin-projections
I Drop and Pin<P> interactions: Drop guarantee, pinned even

in drop
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